Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Elife ; 132024 Apr 19.
Article in English | MEDLINE | ID: mdl-38640072

ABSTRACT

NADPH oxidases (NOX) are transmembrane proteins, widely spread in eukaryotes and prokaryotes, that produce reactive oxygen species (ROS). Eukaryotes use the ROS products for innate immune defense and signaling in critical (patho)physiological processes. Despite the recent structures of human NOX isoforms, the activation of electron transfer remains incompletely understood. SpNOX, a homolog from Streptococcus pneumoniae, can serves as a robust model for exploring electron transfers in the NOX family thanks to its constitutive activity. Crystal structures of SpNOX full-length and dehydrogenase (DH) domain constructs are revealed here. The isolated DH domain acts as a flavin reductase, and both constructs use either NADPH or NADH as substrate. Our findings suggest that hydride transfer from NAD(P)H to FAD is the rate-limiting step in electron transfer. We identify significance of F397 in nicotinamide access to flavin isoalloxazine and confirm flavin binding contributions from both DH and Transmembrane (TM) domains. Comparison with related enzymes suggests that distal access to heme may influence the final electron acceptor, while the relative position of DH and TM does not necessarily correlate with activity, contrary to previous suggestions. It rather suggests requirement of an internal rearrangement, within the DH domain, to switch from a resting to an active state. Thus, SpNOX appears to be a good model of active NOX2, which allows us to propose an explanation for NOX2's requirement for activation.


Subject(s)
NADPH Oxidases , Oxidoreductases , Humans , NADPH Oxidases/metabolism , Reactive Oxygen Species/metabolism , X-Rays , Electron Transport , Oxidoreductases/metabolism , Flavins/chemistry , Flavins/metabolism
2.
Antioxidants (Basel) ; 10(6)2021 Jun 01.
Article in English | MEDLINE | ID: mdl-34205998

ABSTRACT

The reactive oxygen species (ROS)-producing enzyme NADPH oxidase (NOX) was first identified in the membrane of phagocytic cells. For many years, its only known role was in immune defense, where its ROS production leads to the destruction of pathogens by the immune cells. NOX from phagocytes catalyzes, via one-electron trans-membrane transfer to molecular oxygen, the production of the superoxide anion. Over the years, six human homologs of the catalytic subunit of the phagocyte NADPH oxidase were found: NOX1, NOX3, NOX4, NOX5, DUOX1, and DUOX2. Together with the NOX2/gp91phox component present in the phagocyte NADPH oxidase assembly itself, the homologs are now referred to as the NOX family of NADPH oxidases. NOX are complex multidomain proteins with varying requirements for assembly with combinations of other proteins for activity. The recent structural insights acquired on both prokaryotic and eukaryotic NOX open new perspectives for the understanding of the molecular mechanisms inherent to NOX regulation and ROS production (superoxide or hydrogen peroxide). This new structural information will certainly inform new investigations of human disease. As specialized ROS producers, NOX enzymes participate in numerous crucial physiological processes, including host defense, the post-translational processing of proteins, cellular signaling, regulation of gene expression, and cell differentiation. These diversities of physiological context will be discussed in this review. We also discuss NOX misregulation, which can contribute to a wide range of severe pathologies, such as atherosclerosis, hypertension, diabetic nephropathy, lung fibrosis, cancer, or neurodegenerative diseases, giving this family of membrane proteins a strong therapeutic interest.

3.
Biophys J ; 119(3): 605-618, 2020 08 04.
Article in English | MEDLINE | ID: mdl-32668232

ABSTRACT

Small angle neutron scattering (SANS) provides a method to obtain important low-resolution information for integral membrane proteins (IMPs), challenging targets for structural determination. Specific deuteration furnishes a "stealth" carrier for the solubilized IMP. We used SANS to determine a structural envelope of SpNOX, the Streptococcus pneumoniae NADPH oxidase (NOX), a prokaryotic model system for exploring structure and function of eukaryotic NOXes. SpNOX was solubilized in the detergent lauryl maltose neopentyl glycol, which provides optimal SpNOX stability and activity. Using deuterated solvent and protein, the lauryl maltose neopentyl glycol was experimentally undetected in SANS. This affords a cost-effective SANS approach for obtaining novel structural information on IMPs. Combining SANS data with molecular modeling provided a first, to our knowledge, structural characterization of an entire NOX enzyme. It revealed a distinctly less compact structure than that predicted from the docking of homologous crystal structures of the separate transmembrane and dehydrogenase domains, consistent with a flexible linker connecting the two domains.


Subject(s)
NADPH Oxidases , Neutron Diffraction , Membrane Proteins , Oxidation-Reduction , Scattering, Small Angle
4.
Biochim Biophys Acta Biomembr ; 1861(5): 939-957, 2019 05 01.
Article in English | MEDLINE | ID: mdl-30776334

ABSTRACT

Laurylmaltose neopentylglycol (LMNG) bears two linked hydrophobic chains of equal length and two hydrophilic maltoside groups. It arouses a strong interest in the field of membrane protein biochemistry, since it was shown to efficiently solubilize and stabilize membrane proteins often better than the commonly used dodecylmaltopyranoside (DDM), and to allow structure determination of some challenging membrane proteins. However, LMNG was described to form large micelles, which could be unfavorable for structural purposes. We thus investigated its auto-assemblies and the association state of different membrane proteins solubilized in LMNG by analytical ultracentrifugation, size exclusion chromatography coupled to light scattering, centrifugation on sucrose gradient and/or small angle scattering. At high concentrations (in the mM range), LMNG forms long rods, and it stabilized the membrane proteins investigated herein, i.e. a bacterial multidrug transporter, BmrA; a prokaryotic analogous of the eukaryotic NADPH oxidases, SpNOX; an E. coli outer membrane transporter, FhuA; and the halobacterial bacteriorhodopsin, bR. BmrA, in the Apo and the vanadate-inhibited forms showed reduced kinetics of limited proteolysis in LMNG compared to DDM. Both SpNOX and BmrA display an increased specific activity in LMNG compared to DDM. The four proteins form LMNG complexes with their usual quaternary structure and with usual amount of bound detergent. No heterogeneous complexes related to the large micelle size of LMNG alone were observed. In conditions where LMNG forms assemblies of large size, FhuA crystals diffracting to 4.0 Šwere obtained by vapor diffusion. LMNG large micelle size thus does not preclude membrane protein homogeneity and crystallization.


Subject(s)
Glycols/chemistry , Membrane Proteins/chemistry , Hydrophobic and Hydrophilic Interactions , Kinetics , Maltose/chemistry , Micelles , Molecular Structure , Particle Size , Solubility
SELECTION OF CITATIONS
SEARCH DETAIL
...